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Small bipolarons in the 2-dimensional Holstein-Hubbard model.
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Abstract. The spatially localized bound states of two electrons in the adiabatic two-dimensional Holstein-
Hubbard model on a square lattice are investigated both numerically and analytically. The interplay
between the electron-phonon coupling g, which tends to form bipolarons and the repulsive Hubbard in-
teraction υ ≥ 0, which tends to break them, generates many different ground-states. There are four
domains in the g, υ phase diagram delimited by first order transition lines. Except for the domain at weak
electron-phonon coupling (small g) where the electrons remain free, the electrons form bipolarons which can
1) be mostly located on a single site (small υ, large g); 2) be an anisotropic pair of polarons lying on two
neighboring sites in the magnetic singlet state (large υ, large g); or 3) be a “quadrisinglet state” which
is the superposition of 4 electronic singlets with a common central site. This quadrisinglet bipolaron is
the most stable in a small central domain in between the three other phases. The pinning modes and the
Peierls-Nabarro barrier of each of these bipolarons are calculated and the barrier is found to be strongly
depressed in the region of stability of the quadrisinglet bipolaron.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.38.+i Polarons and electron-phonon
interactions – 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons,
resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) –
74.25.Jb Electronic structure

1 Introduction

The standard BCS theory of superconductivity [1] holds
for a system of noninteracting electrons weakly coupled
to a quantum field of phonons. It has been well-known for
several decades that when the electron-phonon coupling
increases too much, the BCS theory breaks down because
of lattice instabilities [2]. As a consequence, rather low
critical temperatures (≈ 30 K) were predicted as the upper
bound for real BCS superconductors [3]. Many theories
have subsequently been developed to describe the strong
coupling regime with the hope to predict the existence of
non-BCS superconductors with high critical temperature.
After the discovery by Bednorz and Müller [4–6] of cuprate
materials, which can be superconducting at temperatures
as high as 100 K or more, the bipolaron approach (among
others) regained much interest [7].

Since Landau [8], it has been acknowledged that a sin-
gle electron (or equivalently a pair of noninteracting elec-
trons coupled to a deformable classical field) may localize
in the potential created self-consistently by a deformation
of the field. The resulting object is called “polaron” for one
electron or “bipolaron” for two electrons. The bipolaron
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theory of Alexandrov et al. [9] involves small bipolarons
which are pairs of electrons with opposite spins, sharply
localized at single sites of the lattice. Actually, because
the phonons are quantum, these bipolarons are hard-core
bosons that could condense in a superfluid state. For mod-
els in two dimensions and more, bipolarons exist only
when the electron-phonon coupling is large enough [10],
and they are always sharply localized as small bipolarons
when the interactions are local. Thus, taking physically
realistic parameters for the model, the effective mass of
the bipolarons becomes so huge (quasi-infinite) that it
seems quite unreasonable to expect the bipolarons to be-
come superfluid at a non-negligible temperature. This
aspect of the problem has been emphasized recently in
reference [11]. However, the argument used by these au-
thors was based on standard considerations that did not
take into account the effect of mass reduction we shall
discuss in this and a subsequent paper [17].

Indeed, in realistic physical models, the characteristic
energy of the bare electrons is usually a few eV and is
much larger than the phonon energies which is at most
about a tenth of an eV. As a result, the quantum fluctu-
ations of the phonons become generally negligible as soon
as the electron-phonon coupling is strong enough to gen-
erate bipolarons. Then the potential interactions between
the bipolarons are much larger than their quantum kinetic
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energy. In that situation, the many bipolaron structures
should be well described by an effective Ising pseudospin
Hamiltonian, predicting an insulating Bipolaron Charge
Density Wave at low temperature [12–14].

However, there might exist special and exceptional sit-
uations where the effective mass of the bipolarons is not
quasi-infinite but becomes small enough so that they pos-
sibly condense into a superfluid state. The smaller the
bipolaron mass is, the higher the critical temperature
should be. As conjectured in references [15,16], this sit-
uation might be produced by a well-balanced interplay
between the bare electronic kinetic energy, the electron-
phonon coupling and the direct electron-electron repul-
sion. The aim of this paper is to study this interplay in
the simplest Holstein-Hubbard (HH) model where these
interactions are present.

This first paper is devoted to the study of a single
bipolaron in the HH model in the adiabatic limit, as-
suming classical phonons. Obviously the assumption that
there are no quantum phonon fluctuations does not allow
superfluid states (with many electrons). In the next pa-
per [17], the quantum phonon correction to the adiabatic
case will be studied. There, it will be shown that in some
regions of the parameter space, there is indeed a drastic
reduction of the quantum bipolaron’s effective mass due
to quantum resonances between several almost degenerate
adiabatic bipolaron structures. A large part of the scien-
tific material of these two papers can be already found (in
French) in the PhD dissertation of one of us [18].

Some numerical studies of the bipolarons in the one-
dimensional adiabatic HH model, were already presented
in reference [19] (as well as few preliminary studies in two
dimensions). Bipolarons always exist in one-dimensional
models as expected, but when the Hubbard term υ in-
creases from zero, a first order transition occurs between
the single site bipolaron (S0) and a bipolaron (S1) com-
posed of two bounded polarons on two neighboring sites in
a magnetic singlet state. It was observed that the classical
mobility of the bipolaron (assuming the lattice dynamics is
classical) was significantly enhanced in the vicinity of this
transition. Owing to the presence of the Hubbard term,
quite small bipolarons could become nevertheless highly
mobile over hundreds of lattice spacings.

The behavior of the bipolaron in the two-dimensional
case is quite different from the one-dimensional case. Al-
though it does not describe precisely the CuO2 planes of
cuprates [6], it might exhibit similar features as more re-
alistic models. In two-dimensional models with local in-
teractions, the bipolarons exist only for a large enough
electron-phonon coupling and are always sharply localized
(small bipolarons). We numerically calculate these bipo-
larons by using a continuation method of these solutions
from the anti-integrable limit [20], where the electronic
transfer integral is zero.

The ground state of the bipolarons in this limit can
be easily found and consists of either a bipolaron local-
ized at a single site (S0) or of two uncoupled polarons at
arbitrary different sites, but there are many other states
with larger energy that are combinations of singlet states

(multisinglets). Many of these bipolaron states can be con-
tinued when the transfer integral varies from zero and
their energies can be compared. Although the bipolaron
(S0) or the singlet bipolaron (S1), persist with the lowest
energy in large parts of the phase diagram, it is found that
a quadrisinglet state (QS) becomes the ground-state in an
intermediate regime of parameters.

We show that we can reproduce quite accurately the
same phase diagram by choosing variational wave func-
tions for the electrons made from simple combinations of
exponentials reproducing the main characteristic of the
spin structure of the bipolaron. (This is an extension of
the variational method used in Ref. [21]). Further exten-
sions could be developed later for the many-body problem.

We investigate the properties of all the obtained so-
lutions by calculating their binding energies, their pin-
ning and breathing modes and also their Peierls-Nabarro
energy barrier. We find a substantial softening of their
pinning (and breathing) modes and a sharp depression
of the PN energy barrier in the region where the (QS)
bipolaron becomes the ground-state. Although the classi-
cal mobility of the bipolarons never becomes as large as
in the one-dimensional case [19], it is sufficient to favor
a good quantum mobility [17] in a specific region of the
phase diagram.

2 The model

To keep in mind the physical magnitude of the dimen-
sionless parameters involved in our reduced model, let us
first write the Holstein-Hubbard Hamiltonian with all its
parameters measured in the original physical units:

H = −T
∑
〈i,j〉,σ

C+
i,σCj,σ +

∑
i

~ω0(a+
i ai)

+
∑
i

gni(a+
i + ai) +

∑
i

υni,↑ni,↓. (1)

The electrons are represented by the standard fermion op-
erators C+

i,σ and Cj,σ at site i with spin σ =↑ or ↓. Then
T is the transfer integral of the electrons between nearest
neighbor sites 〈i, j〉 of the lattice. In physical systems, its
order of magnitude is usually measured in eV.

a+
i and ai are standard creation and annihilation bo-

son operators of phonons. ~ω0 is the phonon energy of a
dispersionless optical phonon branch with order of mag-
nitude a tenth of an eV at most.

g is the constant of the on-site electron-phonon cou-
pling which may physically range from zero to a fraction of
an eV. The on-site electron-electron interaction is repre-
sented by a Hubbard term with positive coupling υ which
may range physically from negligible to large values of the
order of 10 eV.

Choosing E0 = 8g2/~ω0 as the energy unit and intro-
ducing the position and momentum operators:

ui =
~ω0

4g
(a+
i + ai) (2)

pi = i
2g
~ω0

(a+
i − ai) (3)
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we obtain the dimensionless Hamiltonian:

H =
∑
i

(
1
2
u2
i +

1
2
uini + Uni↑ni↓

)
− t

2

∑
〈i,j〉,σ

C+
i,σCj,σ

−γ
2

∑
i

p2
i . (4)

The parameters of the system are now:

E0 = 8g2/~ω0 U =
υ

E0
t =

T

E0
γ =

1
4

(
~ω0

2g
)4

(5)

The parameter γ measures how “quantum” is the lattice.
The BCS theory requires g � ~ω0: that is, large γ. We
are interested in the opposite regime of strong electron-
phonon coupling: that is, g larger than the phonon energy
~ω0. Then γ becomes small.

Thus the adiabatic approximation, which is simply ob-
tained by taking γ = 0, becomes valid in the strong elec-
tron phonon regime. We shall assume this condition in
this first paper. Then {ui} commutes with the Hamilto-
nian and can be taken as a scalar variable. For a given set
of {ui}, the adiabatic Hamiltonian

Had =
∑
i

(
1
2
u2
i +

1
2
uini + Uni↑ni↓

)
− t

2

∑
〈i,j〉,σ

C+
i,σCj,σ

(6)

commutes with the total spin of the system.
Thus, the eigenstates of a system with two electrons

are either nondegenerate singlet states or three-fold degen-
erate triplet states. The wavefunction of the singlet state
has the form

|Ψ〉 =
∑
i,j

ψi,jC
+
i,↑C

+
j,↓|∅〉 (7)

where |∅〉 is the vacuum (no electrons in the system) and
ψi,j = ψj,i is normalized∑

i,j

|ψi,j |2 = 1 (8)

on the 2D lattice (ZD)2 (D = 2 being the lattice dimen-
sion we consider in this paper). The wave function of the
triplet state (oriented with the spin +1 in order to fix the
ideas), has the form

|Ψ〉T =
∑
i,j

ψT
i,jC

+
i,↑C

+
j,↑|∅〉 (9)

where ψT
i,j = −ψT

j,i is normalized and antisymmetric. Ac-
tually, the singlet wave and the triplet functions which are
eigenstates of the adiabatic Hamiltonian (6) both yield the
same eigen-equation for their components ψi,j or ψT

i,j

− t
2
∆ψi,j +

(
1
2

(ui + uj) + Uδi,j

)
ψi,j = Fel({ui})ψi,j

(10)

where ∆ is the discrete Laplacian operator in the 2D lat-
tice (ZD)2 defined as (∆Ψ)i =

∑
j:i Ψj where j ∈ (ZD)2

are the nearest neighbors of i ∈ (ZD)2.
Unlike the singlet states, the eigenenergies of the

triplet states do not depend on the Hubbard term U since
ψT
i,i = 0 and thus are just the same as for noninteract-

ing electrons. Taking into account that in our model, the
transfer integrals with amplitude t > 0 connect only the
nearest neighbor sites, it is straightforward to check that
the singlet state defined as ψi,j = |ψT

i,j | always has less
energy than the triplet state with wave function {ψT

i,j}.
As a result, the ground-state of our system is necessarily
a singlet state with the form (7).

The energy of (6) depends on {ψi,j} and {ui} as

F ({ψi,j}, {ui}) =
∑
i

(
1
2
u2
i +

ui
2
ρi + U |ψi,i|2

)
− t

2
〈ψ|∆|ψ〉 (11)

where the electronic density at site i is

ρi =
∑
j

(|ψi,j |2 + |ψj,i|2). (12)

Extremalizing F ({ψi,j}, {ui}) with respect to the normal-
ized electronic state {ψi,j} and the displacements {ui}
yields the set of coupled equations (10) and

ui +
ρi
2

= 0. (13)

Fel({ui}) is an eigenenergy of two interacting electrons in
the potential generated by the lattice distortion {ui}. Us-
ing equation (13), the extrema of equation (11) are those
of the variational energy

Fv({ψi,j}) =
∑
i

(
−1

8
ρ2
i + U |ψi,i|2

)
− t

2
〈ψ|∆|ψ〉 (14)

for ψi,j normalized and where ρi is given by equation (12).
Then, it follows that

− t
2
∆ψi,j +

(
−1

4
(ρi + ρj) + Uδi,j

)
ψi,j = Felψi,j (15)

and also that for the solutions of this equation, the energy
of the system is

Fv({ψi,j}) = Fel +
1
8

∑
i

ρ2
i . (16)

3 Numerical continuations of bipolarons
from the anti-integrable limit

3.1 Bipolarons in the anti-integrable limit

In the anti-integrable limit t = 0, the adiabatic ground-
state for two electrons is easily found. For U ≤ 1/4, it
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consists of a pair of electrons localized at a single site i.
This is the standard small bipolaron known in the litera-
ture, denoted (S0) (see Fig. 1). For a bipolaron at site i,
its electronic wave function is

|Ψ〉 = C+
i,↑C

+
i,↓|∅〉 (17)

and its energy is Fv = U − 1/2.
When U ≥ 1/4, the ground-state consists of two un-

bound polarons localized at arbitrary different sites i and
j and with arbitrary spins. It is thus degenerate and its
energy Fv = −1/4 is independent of the Hubbard interac-
tion. When sites i and j are nearest neighbors, we define
the bipolaron (S1) [15,16] (see Fig. 1) with electronic wave
function

|Ψ〉 =
1√
2

(C+
i,↑C

+
j,↓ + C+

j,↑C
+
i,↓)|∅〉 (18)

where i and j are nearest neighbor sites.
Since a single polaron has the electronic spin 1/2, when

the transfer integral t is small but not zero, a standard
perturbation theory yields an antiferromagnetic exchange
coupling 2t2/U between the two spins of the uncoupled
neighboring polarons. When the spins are chosen in the
singlet state represented by equation (18), these two po-
larons have the energy Fv ≈ −1/4− t2/U . When they are
not located at nearest-neighbor sites but at the lattice dis-
tance n, perturbation theory to order n yields an antifer-
romagnetic exchange coupling proportional to U(t/U)2n.
Thus, for t � U , the minimum energy is obtained for
nearest neighbor bipolarons in the singlet magnetic state
(S1). It is maximum when U is close to and above 1/4,
just when (S1) becomes of lower energy than (S0). For t
fixed, it decreases to zero when U increases. This binding
energy also vanishes in the anti-integrable limit t. Unlike
bipolaron (S0), bipolaron (S1) breaks the square lattice
symmetry and is oriented either in the x direction or the
y direction.

When t is not very small, the spatial extension of the
polarons goes significantly beyond single sites, and it is not
obvious that a low-order perturbation theory holds. The
true ground state might not be obtained by continuation
of the solutions (S0) or (S1). There are infinitely many
other bipolaron states at t = 0 (solutions of Eq. (10)),
which have been classified in Appendix A1. Some of them
are not very different in energy and could compete to be-
come the true bipolaron ground-state when t increases.
Therefore, it becomes useful to test the ground-state of
the bipolaron at t 6= 0 among the extrema of equation (14)
that are obtained by continuation from those calculated
in the anti-integrable limit at t = 0.

It is of course impossible to continue and to test nu-
merically the energy of all the solutions of equation (10)
at t = 0. The study of Appendix A shows that the binding

1 Actually, this result should not be surprising since there
are already infinitely many metastable states in addition to the
standard single bipolaron [22] (see also Sect. 5.4 in Ref. [13]) in
the pure Holstein model, which however never become ground-
state.

energy of the bipolarons is non-negligible only when the
total number Ns of occupied sites is not too large. The
non-connected bipolaron states are discarded because at
t = 0 they always have more energy than their connected
component with the smallest energy, and at t 6= 0, their
absence of connectivity is not favorable for gaining energy
from the electronic kinetic energy term with amplitude t.

On the contrary, the star multisinglet bipolaron states
with one central site with electronic density ρ1 = 1
(N1 = 1) andN2 ≤ 4 nearest neighbor sites with electronic
density ρ2 = 1/N2 and energy Fv = −(1+1/N2)/8 at t = 0
appear much more favorable for reducing their energy
when t increases. They are still spatially well-localized,
which allows an efficient energy gain from the electron
phonon coupling and only a small energy loss due to the
Hubbard term (no doubly occupied sites). Moreover, the
peripheral electron can gain a substantial electronic ki-
netic energy by occupying N2 sites when N2 > 1. In the
limit of N2 large, this energy gain can reach a maximum
at 2t. These bipolaron states have no continuous degener-
acy at t = 0 and thus according to the implicit function
theorem, they can be continued for t not too large.

At t = 0, the electronic wave function of a star N2-
singlet bipolaron centered at the origin 0 is:

|Ψ〉 =
∑
ν

1√
2N2

(C+
0,↑C

+
jν ,↓ + C+

jν ,↑C
+
0,↓)|∅〉 (19)

where jν are neighboring sites to the origin. They could
also be chosen farther away, but when the bipolaron be-
comes too extended, its energy does not decrease suffi-
ciently to become the ground-state. We tested the most
compact bipolarons which are star bisinglet bipolaron
states (BS) with N2 = 2 and jν are the two neighbor-
ing sites to the origin in the direction x (or x and y), star
trisinglet bipolaron states (TS) where N2=3 and jν are
three of the neighboring sites of the origin, and the square
symmetric quadrisinglet (QS) (N2 = 4) which involves the
four neighboring sites of the origin.

For larger or infinite lattices, multisinglets with equal
electronic densities at the occupied sites might not be too
high in energy and have been also tested. Although they
are continuously degenerate in the anti-integrable limit,
their degeneracy is raised when t 6= 0. We considered for
example, the square symmetric quadrisinglet state (QS2)
which occupies the four corners jν of an elementary square
of the lattice. One of its degenerate wave functions is

|Ψ〉 =
∑
ν 6=ν′

1√
8
C+
jν ,↑C

+
jν′ ,↓|∅〉 (20)

with energy Fv = −1/8

3.2 Numerical technique of continuation

The most efficient numerical techniques for the continu-
ation of solutions of sets of equations as a function of a
parameter, are usually based on a Newton method. For ex-
ample, such techniques were developed efficiently for cal-
culating discrete breathers [23]. In our case to calculate
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Fig. 1. Schemes of the bipolarons (S0), (S1) and (QS) appearing as possible ground-states

accurately adiabatic bipolarons on a 2D system, a rea-
sonable size should be 10 × 10. Then calculating the 104

components of ψi,j with a Newton method, requires to
work with huge matrices containing 108 coefficients: that
is, to use a large-memory, fast computer. Actually, smaller
size conventional computers suffice if one uses appropri-
ate techniques needing a much smaller working space. This
technique does not allow to continue all solutions but only
those which are locally stable (in particular, the bipolaron
ground-state) and those that can be made stable by fixing
some spatial symmetries of the bipolaron.

This method is quite simple in its principle. To solve
equation (15) with condition (12), we start from a nor-
malized trial solution of equation (15), Φ = {φi,j} with
φi,j = φj,i, and we calculate recursively a new normalized
trial solution Ψ1 = T (Φ) = {ψi,j} as

N1ψi,j = − t
2
∆φi,j +

(
Uδi,j −

∑
k

(φ2
i,k + φ2

j,k)−K
)
φi,j

(21)

where N1 is the normalization factor (chosen negative)
and K is some positive constant that we introduce to en-
sure the convergence to a minimum energy state. Actually,
it can be chosen to be zero in the domain of parameter we
study.

We find numerically that for n large enough, Ψn =
T (Ψn−1) and its normalization factor Nn converge to
the limits Ψ and N , respectively. Ψ is a solution of
equation (15) with the condition (12) and for the eigenen-
ergy Fel = N −K. This solution corresponds to the eigen-
vector of equation (15) (where ρi and ρj are fixed) asso-
ciated with the eigenvalue Fel which is such that Fel −K
has the largest modulus. In principle, the constant K is
chosen large enough in order that Fel is surely the low-
est negative eigenvalue: that is, for the electronic ground-
state. One can easily check in the anti-integrable limit that
K = 0 is an appropriate choice when U < 1/2. Varying
one of the model parameters by small steps, each solution
is taken as a trial solution for the next step. It is easy to
determine whether the solution varies quasicontinuously
or discontinuously.

For the solutions in the anti-integrable limit which are
non-degenerate, it can be checked that the hypotheses of

the implicit function theorem, are fulfilled. Thus continu-
ation is in principle possible2. For those which belong to
a degenerate continuum, the conditions for applying the
implicit theorem are not fulfilled, but when some spatial
symmetries or some constraints on the solution are fixed,
the degeneracy at t = 0 can lifted and this theorem ap-
plies.

In the anti-integrable limit, only (S0) for U < 1/2 and
(S1) for 0 < U (and (Sn) with n > 0 being the distance be-
tween two polarons) are numerically stable: that is, can be
followed continuously from t = 0 by using algorithm (21).
Actually, we choose as initial solution at t = 0, the ex-
act bipolaron solutions described above, which are (S0),
(S1), (QS), (BS), (TS) and (QS2). Maintaining by force
the spatial symmetries of the solution at t = 0, the conver-
gence process becomes stable again, and the continuation
of these solutions is feasible.

The main advantage of our method is that it can be
performed on standard computers. Its flaw is that we
might not be able to follow continuously a solution that
is mathematically continuable. Actually, rather few bipo-
laron states are continuable. In contrast, our method is
very reliable for finding the true bipolaron ground state,
because it brings spontaneously the bipolaron solution to
a local minimum of the variational energy.

Actually, we checked that when there is no symmetry
constrains and independent of the initial trial solution,
in most cases our numerical algorithm converges sponta-
neously toward the same bipolaron state, which then can
be considered as the true bipolaron ground-state. How-
ever, this situation does not occur in the vicinity of the
first order transition lines where we can obtain a few dif-
ferent bipolaron states depending on the initial condition,
but then their energies can be easily compared to find the
ground-state.

2 The implicit function theorem was already used in simi-
lar anti-integrable limits, for example in reference [24] for po-
larons and bipolarons in the original Holstein model or in ref-
erence [25] for discrete breathers.
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Fig. 2. Phase diagram of the bipolaron in the 2D Holstein-Hubbard model in the plane of parameters U and t. There are four
phase domains separated by first order transition lines corresponding to bipolarons (S0), (S1), (QS) and two unbound extended
electrons. Also shown are the limit of metastability of the bipolaron (S0) (dotted line), bipolaron (S1) (dot-dashed line) and
bipolaron (QS) (dashed line). Insert: Magnification of the phase diagram around the triple point involving phases (S0), (S1)
and (QS).

3.3 Bipolaron phase diagram

The ground-state for a pair of electrons is obtained by
comparing the energies Fv of many bipolarons continued
from the anti-integrable limit (see also [19]). For larger
t, the ground-state corresponds to a pair of electrons
extended over the whole system. There is a first order
transition line, when t becomes smaller, at which the two
electrons bind with each other and self-localize into a bipo-
laron. The region below this line is divided into three do-
mains separated by other first-order transition lines. For
U small, the bipolaronic ground-state is (S0). When U in-
creases for t not too large, there is a transition line between
bipolarons (S0) and (S1). For larger t, this transition line
bifurcates at a triple point at t ≈ 0.785 and U ≈ 0.235 into
two first order transition lines which both join the transi-
tion line with the extended states. In between the fork that
is generated, there is a small domain where the bipolaron
(QS) that was initially unstable for t small, recovers its
stability and even becomes the ground-state. Other bipo-
laronic structures continued from the anti-integrable limit
at t = 0 appear as minimum energy states in the domain
shown in Figure 2. The (QS) solution can be viewed as a
localized RVB state similar to that proposed by Anderson
some years ago [26] in the pure Hubbard model in 2D as
a theory for superconductivity in cuprates.

In our model, this (QS) bipolaron has the quan-
tum symmetry (s) because the kinetic energy term is
Laplacian-like. However, the study of Appendix C in the
anti-integrable limit, suggests that it is close in energy
to other states with quantum symmetry (s′) or (d). Such

symmetries could be favored by slight model variations on
the form of the kinetic energy.

At the triple point, the bipolaronic structure of our
model is degenerate between three states (S0), (S1) and
(QS). Figure 3 shows the profiles of the electronic density
for these three types of bipolaron, which have the same
energy. Interestingly, they extend significantly over only a
few sites, and thus can be called small bipolarons.

The binding energy of a bipolaron is defined as the dif-
ference between the smallest energy state where the pair of
electrons is unbound, and the bipolaron energy. Depend-
ing on the parameters, this unbound state could be either
two extended electrons with opposite spins in the plane
wave state at zero momentum or two polarons localized
far apart. The variation of this binding energy versus U
and for several values of t is shown Figure 4.

At the triple point, the binding energy of the degen-
erate bipolarons (in that case, to produce two extended
electrons) is much smaller than the binding energy of bipo-
laron (S0), at the same value of t but at U = 0. However,
it still has a substantial value that is physically far from
being negligible.

The binding of bipolarons (S1) and (QS) are physically
better interpreted as being of magnetic origin. These bipo-
larons can be viewed as two closely bound polarons with
spins 1/2. Their binding energy is mostly due to the spin
energy gain obtained by lifting the spin degeneracy as a
singlet state.

In the vicinity of the triple point and specifically in
that region, the quantum lattice fluctuations (γ 6= 0)
will also lift the degeneracy between the three degenerate
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Fig. 3. Profile of electronic density versus site i at the triple
point t = 0.0779, U = 0.234 for bipolarons (S0), (QS) and (S1)
along their symmetry y-axis and the transverse x-axis. These
three bipolarons have the same energy.

bipolarons (S0),(S1) (in both directions x and y), (QS) re-
sulting in a sharp mass reduction (or equivalently a large
tunneling energy or a large band width) (see [17]).

4 Variational calculation of bipolarons

We now reproduce, with good accuracy, the phase diagram
shown in Figure 2 using simple variational approximations
for the bipolarons (S0), (S1) and (QS). For that purpose,
the variational forms have to be chosen appropriately un-
der two conflicting constraints. On the one hand, they
should be physically realistic enough in order to mimic
the real ground-state. On the other hand, the analytical
calculations of their variational energy should be practi-
cally feasible.

In reference [21], it was shown that an exponential form
centered at the occupied site with a unique variational
parameter, was a good variational form for a single po-
laron, reproducing accurately its quantitative properties.
We choose a similar normalized variational form for the
electronic wave function of bipolaron (S0) located at the
origin

ψS0
i,j = Aλ(|i|+|j|) with A =

(
1− λ2

1 + λ2

)2

(22)

(for i = (ix, iy), we set |i| = |ix| + |iy|). This variational
form is easily extended to the electronic wave function of
bipolaron (S1) in a singlet magnetic state located at sites
(0, 0) and (1, 0):

ψS1
i,j =

B√
2

(λ(|ix−1|+|iy|+|jx|+|jy|) + λ(|ix|+|iy|+|jx−1|+|jy|))

with B =
(1− λ2)2

(1 + λ2)
√

1 + 6λ2 + λ4
· (23)
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envelope (thick line) is the binding energy of the ground-state.
Insert: magnification at the first order transition between (S0)
and (QS).

The variational form for the electronic wave function of
bipolaron (QS) centered at the origin is a combination
of four of these variational forms in the four directions of
the square lattice, but now it becomes useful to introduce
two variational parameters λ and µ instead of only one, to
distinguish between the spatial extension of the polaron
that is at the center from those that are the periphery:

ψQS
i,j =

C√
8
µ(|jx|+|jy|)

∑
±

(λ(|ix±1|+|iy|) + λ(|ix|+|iy±1|))

+
C√
8
µ(|ix|+|iy|)

∑
±

(λ(|jx±1|+|jy|) + λ(|jx|+|jy±1|)) (24)
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where for normalization

C−2 =
(

1 + µ2

(1− µ2)(1− λ2)

)2

×
[
(1 + λ2)2 + λ2(3− λ2)(1 + λ2) + 8λ2

]
+4

(1 + λµ)2(λ+ µ)2

(1− λµ)4
· (25)

The energy (14) can be analytically calculated with the
variational forms (22, 23, 24). Extremalizing the resulting
energy with respect to the parameters λ and µ yields the
energies of bipolarons (S0), (S1) and (QS) with a very
good accuracy. We do not reproduce here these tedious
calculation. We also remark that this variational method
allows one to compute the bipolaron structures even when
they become unstable so that they cannot be numerically
continued with our method. Comparing these variational
energies allows one to produce a phase diagram that is
very close to the exactly calculated one (see Fig. 5).

However, it is worthwhile to mention that the varia-
tional form (24) of bipolaron (QS) may yield some arte-
facts which are not found in the exact numerical calcula-
tions (as often occurs in variational calculations). Fortu-
nately, they occur in parameter regions where this solution
is not the ground-state, and thus do not affect the phase
diagram. First, there is a first order transition of λ and
µ near the anti-integrable limit. Second, there is another
anomaly when increasing U . It is found that ψQS bifur-
cates onto a unbound solution where µ = 1. This corre-
sponds to an unbound pair of electrons in the spin singlet
state where one electron is self-localized as a polaron and
the second one is extended. As a result, the validity of the
exponential form ψQS is limited to the (QS) region, that
is when this bipolaron is the ground-state.

5 Internal modes and peierls nabarro barriers

The phonon frequencies of the bipolaron can be easily cal-
culated within the standard Born-Oppenheimer approx-
imation (in units

√
γ) as explained in [19]. It is found

that the bipolarons exhibit several localized (or internal)
modes. The breathing mode has the same symmetry as the
bipolaron. The pinning modes are spatially antisymmetric
and tend to move this bipolaron either in the x direction
or the y direction. Figure 6 shows the variations of their
frequencies with U . It is found that in the region of the
triple point where three bipolaronic structures are almost
degenerate, both the breathing and the pinning modes,
soften significantly (approximately by a factor 2).

These weak frequencies for the internal modes can be
considered as evidence that the self consistent potential in
which the bipolaron is pinned becomes rather flat, which
means a small Peierls Nabarro barrier (PN). It is thus use-
ful to calculate precisely this PN energy barrier in order
to confirm this conjecture. In addition, it is found that
the paths that yield the lowest PN energy barrier vary in
the parameter space. The several ways to move the bipo-
laron are sometimes almost equivalent in energy. These
paths should play a role in the quantum tunnelling of the
bipolarons

The PN energy barrier is the minimum energy that
must be provided to the bipolaron to move it by one lat-
tice spacing. For that we have to determine a continuous
path of bipolaronic configurations which connects the ini-
tial bipolaron to a shifted equivalent bipolaron. There is
a maximum of energy along any path, and the minimum
over all paths of this maximum (called minimax) yields
the PN energy barrier.

To move a bipolaron with electronic wave function
{ψin,m} from site i to a neighboring site j (where {ψjn,m} =
{ψin+j−i,m+j−i}), we consider a continuum of bipolaronic
solutions {ψn,m(c)} which depend on c for c0 ≤ c ≤ c1,
and such that {ψn,m(c0)} = {ψin,m} and {ψn,m(c1)} =
{ψjn,m}.

It is convenient for simplicity to choose as variable
c(Ψ), one of the bipolaron components or a simple func-
tion of them. For any continuous path that connects the
bipolaronic ground-state Ψ i = {ψin,m} at site i to the same
configuration Ψ j = {ψjn,m} at an equivalent neighboring
site j, c must take all the values between c0 = c(Ψ i) to
c1 = c(Ψ j). For each value of c, the energy of the bipo-
laronic state will be always larger than or equal to the
minimum of energy of the bipolaronic configuration where
the component corresponding to c(Ψ) is fixed to c. Thus,
starting from the initial ground-state configuration, and
following continuously this minimum by varying this con-
straint c, we may pull continuously the bipolaron from one
site i to its neighboring site j.

For that purpose, the choice of c(Ψ) has to be ap-
propriate to obtain a path of bipolaronic configurations
that connects continuously the two bipolaronic configura-
tions Ψ i and Ψ j and that yields the lowest minimax. We
guess intuitively that the bipolaron could be effectively
pulled only if this constraint affects the “main body” of the



L. Proville and S. Aubry: Small bipolarons in the 2-dimensional Holstein-Hubbard model. I. 49

0.0 0.1 0.2 0.3 0.4
U

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S0 S1

0.07 0.12 0.17 0.22 0.27 0.32
U

0.0

0.2

0.4

0.6

0.8

1.0

S0 QS S1

Fig. 6. Phonon frequencies versus U of the pinning mode
(thick line) and breathing mode (thin line) for bipolaron (S0)
(dotted line), bipolaron (S1) (dot-dashed line), bipolaron (QS)
(dashed line) at t = 0.05 (top) and t = 0.08 (bottom). When,
these bipolarons are ground-state, the corresponding lines are
plain. Vertical lines indicate the first order transitions.

bipolaron instead of a minor component. For our investiga-
tions, we found several continuous paths of configurations
competing for providing the minimax. We obtain them by
using several kinds of constraints for a bipolaron at site i
moving to site j which may be:

ψi,i = c (26)
ψi,j = ψj,i = c (27)
ψj,k = ψk,j = c (28)
ψi,i − ψj,j = c (29)

(k 6= i is a neighboring site of j and bond j − k could
be either collinear with or orthogonal to bond i − j).
These constraints c are easily taken into account with few

minor changes in the numerical programs described above
minimizing the variational form (14). When ψi,i, ψi,j or
ψj,k is fixed to c, it suffices to drop the corresponding
equation (15). When ψi,i − ψj,j = c, it is convenient
to define the new variable φ = (ψi,i + ψj,j)/

√
2. Then,

the variational form (14), depends on φ, c and ψn,m for
(m,n) 6= (i, i) and 6= (j, j). The vector with components
φ and {ψm,n} (with (m,n) 6= (i, i) and 6= (j, j)), has norm√

1− c2/2 which is fixed by the constraint c. Extremal-
izing (14) with respect to its free variables yields a set of
equations that differ slightly from (15), although they de-
pend on c as a parameter. They can be solved with the
same iterative method as before.

We may thus obtain a continuous path of configura-
tions parameterized by c and connecting the bipolaron
ground-state to the same state shifted by one lattice spac-
ing. The extrema of the energy Fv(c) given by (14) (which
satisfy ∂Fv(c)/∂c = 0) correspond to bipolaronic solutions
without constraint. Actually, they can be identified among
the bipolarons that are classified in Appendix A. When
one of these bipolaron is found spatially symmetric with
a symmetry center at the middle of the bond 〈i, j〉, there
is no need to continue the path beyond this point because
it is clear that it can be completed by symmetry. We test
the different constraints (29) and among those that yield
a continuous path, the lowest maximum is considered as
the minimax.

The PN energy barrier is then the difference between
the minimum of energy and the maximum along this best
continuous path.

When the PN energy barrier is smaller than or at most
comparable to the binding energy of the bipolaron, the
two polarons remain surely bound during their continuous
lattice translation and it is then reasonable to believe that
the minimax obtained with the above method is correct.
However, there are regions in the parameter space where
this condition is not fulfilled, and a precise determination
of this PN energy barrier might be questionable. In any
case, the obtained value, if not exact, is necessarily an
overestimate.

When (S0) is the ground-state and U is not too large,
the energy variation versus c = ψi,i − ψj,j starting from
the ground-state bipolaron (S0) is shown in Figure 7. This
path does not need to be continued beyond the point c = 0
because it exhibits a minimax at c = 0 corresponding to a
spatially symmetric bipolaron and thus can be completed
by symmetry. This bipolaron has only one unstable mode
and is the continuation at U small of the stable bipo-
laron (S1) beyond its bifurcation point. At U = 0, its
electronic state corresponds to two electrons with opposite
spins in the lowest eigenstate of the potential generated
by the lattice distortion (Slater determinant). The analy-
sis of Appendix B suggests that for U < 0, this bipolaron
can be continued as the two-site bipolaron (2S0) in the
anti-integrable limit.

When U becomes larger, the previous constraint does
not always yield a continuous path, and another constraint
ψi,j = c is found efficient for providing a continuous path
with a minimax. The energy variation versus c = ψi,j
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starting from the ground-state bipolaron (S0) is shown in
Figure 8 for some bipolarons. We observed that in addition
to the minimum (S0), it exhibits two other extrema. The
second minimum corresponds to the spatially symmetric
bipolaron (S1). Again, there is no need to construct a com-
plete path reaching (S0), since this path can be completed
by symmetry. This figure shows that a pitchfork bifurca-
tion occurs for the minimax when U increases from zero
(at fixed t). The unstable bipolaron (2S0) bifurcates into a
minimum corresponding to the stable bipolaron (S1) and
two symmetric minimax corresponding to intermediate
unstable bipolarons (with one unstable mode), which are
nothing but the star sister bipolarons (S1/S0) described
in Appendix A.23. Actually, this bifurcation line between
(S1/S0) and (S1) appears in Figure 2 as the left border
line of the domain of metastability of bipolaron (S1). In
that regime, the motion of the bipolaron involving the
minimum energy consists in first stretching bipolaron (S0)
into bipolaron (S1) along one lattice direction, and next in
squeezing this bipolaron in the same direction to recover
the bipolaron (S0) translated by one lattice spacing. This
feature is identical to those found for the two-site model
in Appendix B.

When bipolaron (QS) (which does not exist for the
two-site model) becomes the ground-state instead of (S0),
the PN energy barrier should be studied from this initial

3 It is worthwhile to note a similar phenomenon observed
when narrow discrete breathers become mobile [27]. Interme-
diate discrete breathers breaking the lattice symmetry were
also found to appear [28].
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Fig. 8. Same as Figure 7 but with the constraint ψi,j = c
and different parameters. top: t = 0.03, U = 0.1 (full line),
U = 0.15 (long dashed line), U = 0.2 (dashed line) insert:
magnification bottom: t = 0.08, U = 0.18 (full line), U = 0.2
(dashed line). Vertical lines indicates the location of the energy
extrema corresponding to bipolaron (S0) and to bipolaron (S1).

configuration. Figure 9 shows the energy variation versus
ψi,j = c starting from bipolaron (QS). The continuous
path exhibits another minimum corresponding to the sta-
ble bipolaron (S1), which is spatially symmetric. Again,
the continuous path can be completed by symmetry. There
is a minimax which correspond to another bipolaronic
configuration, which we did not analyze in detail but is
likely to be the star trisinglet denoted (TS) described in
Appendix A.1. This curve also demonstrates that for this
value of t, the bipolaronic ground-state changes by a first-
order transition from (QS) to (S1) when increasing U .

It is also worthwhile to note that there is also a PN
energy barrier between the bipolaron (S0) and (QS), which
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extrema corresponding to bipolaron (QS) and (S1).

have the same symmetry (see Fig. 10). We tested that
it does not generate any path with a lower PN energy
barrier when shifting the bipolaron (S0) or (QS) by one
lattice spacing. For that, we compare the energy barrier
obtained for shifting (S0) by one lattice spacing via the
direct path (S1) EB(S0 → S1), to that obtained by the
indirect path (S0) via (QS) and (S1) involving the jump of
two consecutive barriersEB(S0→ QS) and EB(QS→ S1).
We found that the energy barrier between (S0) and (QS)
was always relatively too high to favor the indirect path.

When bipolaron (S1) becomes the ground-state, there
are two PN energy barriers depending on the direction it is
displaced, transversally or longitudinally. If it is displaced
longitudinally in the direction of the bond (i, j) where
(S1) is localized, the minimax may be obtained by varying
the constraint ψj,k = ψk,j = c which tends to displace
(S1) longitudinally. Figure 11 shows this energy variation
versus c starting from bipolaron (S1). The maximum along
this path corresponds to the longitudinal star bisinglet
bipolaron (BS). For t = 0.03 and U > 0.28, it costs less
energy to use this path with minimax (BS′) than to use
the path with minimax (S1/S0) passing by bipolaron (S0).

The transversal PN energy barrier of bipolaron (S1)
can be also calculated. Actually, the transversal motion of
(S1) with the lowest PN energy barrier has to be done in
two steps (in the anti-integrable limit). If we denote by
(i, j, k, l) the corner sites of an elementary square of the
2D lattice and move (S1) from the bond i−j to bond l−k,
then (S1) rotates once by π/2 around the center site i and
again by π/2 but around the center site l. These two jumps
have the same PN energy barrier. It can be measured from
the height of the minimax determined by the constraint
ψi,l = ψl,k = c. This path yields the 2 star multisinglet
(BS′) with a diagonal symmetry axis where ψi,j = ψi,l and
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variation of the bipolaron electronic density along the same
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t = 0.092,U = 0.204 between bipolaron (S0), (QS) as an inter-
mediate state and the extended state (thin line). Insert: Bipo-
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where the two branches (i, j) and (i, l) are orthogonal. It
is found that the longitudinal and transverse PN energy
barrier are almost equal.

The precise determination of the PN energy barrier
becomes more delicate close to the border line of the phase
diagram Figure 2 with the domain of extended electrons.
Here the binding energy of the bipolaron becomes very
weak. To move a bipolaron, it may cost less energy to
pass the energy barrier for breaking the pair of electrons
(Fig. 10), producing extended electronic states, and next
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Fig. 11. Same as Figure 7 but for bipolaron (S1) moving in
the longitudinal direction with the constraint ψj,k = c or ro-
tating transversally with the constraint ψi,l = c at t = 0.01,
U = 0.3 (upper lines), t = 0.03, U = 0.3 (lower lines). (Vertical
lines indicates the location of the energy extrema correspond-
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profile of electronic density along the axis i − j of bipolaron
(S1) for the two continuous paths of the bipolaron at t = 0.03,
u = 0.3 corresponding to the longitudinal motion (left top)
and the transversal motion (right bottom).

to pass a new equivalent energy barrier for reconstructing
the bipolaron at another site.

Figures 12 gather the resulting PN energy barrier
versus U and for several values of t obtained by com-
parison of these different paths (for that reason we have
broken lines with possible discontinuities). The essential
result is that close to the region of the triple point be-
tween bipolaron (S0), (S1) and (QS), the Peierls-Nabarro
energy barrier sharply drops and reaches the same order of
magnitude as the binding energy of the bipolarons. When
U slightly increases beyond this point, the binding en-
ergy of the bipolaron sharply decreases. Conversely, when
U slightly decreases, the PN energy barrier sharply in-
creases. In that region, the paths allowing a shift by one
lattice spacing of a bipolaron with the smallest PN energy
barrier involves the successive transformations . . . (QS)→
(S1) → (QS) . . .

There are regions in the parameter space where the
bipolaron binding energy becomes very small, for example
when t is small and U > 1/4) (e.g. Fig. 12 at t = 0.03).
The PN energy barrier of a bipolaron is then practically
equal to the PN energy barrier of a free single polaron. In
other regions, close to the first-order transition border line
with the extended states, the bipolaron binding energy
also becomes very small, but then the PN energy barrier is
practically that which has to be overcome for the electron
delocalization.
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6 Concluding remarks

The interplay between the electron-phonon coupling and
the direct electronic repulsion has been treated accurately
in the adiabatic Holstein-Hubbard model in two dimen-
sions. Numerical investigations complemented by analytic
variational calculations yield the phase diagram of the
ground-state of a single bipolaron, which consists of sev-
eral domains separated by first order transition lines (see
Fig. 2). It is found that the different bipolaronic states
that are obtained, already exist at the anti-integrable limit
and can be generated from this limit by continuation.

There is an interesting region in the phase diagram
where the bipolaronic ground-state becomes a quadrisin-
glet bipolaron, which is a superposition of four singlets
sharing one central site. The binding energy of that bipo-
laron is the result of the spin resonance between a strongly
localized polaron and a peripheral electron localized on its
nearest neighbors.

There is a triple point where the three kinds of bipo-
laron coexist with the same binding energy, which is still
significantly large and non-negligible. The internal modes
of the bipolarons soften significantly in that region. More-
over, the Peierls-Nabarro energy barrier (PN) of the bipo-
laron in that region is strongly depressed, which improves
the classical mobility of this bipolaron. This effect is re-
lated to the appearance of several intermediate metastable
bipolaronic state which have almost the same energy. A
small variation of parameters (U, t) in that region suffices
either to lift the near degeneracy, with a PN energy bar-
rier which grows very fast, or to depress sharply the bind-
ing energy of the bipolaron itself. The energy landscape
around the bipolaron has been explored. It has been found
that it is quite flat in the region of the triple point with
several minimum energy states close in energy and small
energy barriers between them.

These features strongly support the conjecture that
the quantum tunneling of the bipolaron will be strongly
enhanced in the vicinity of this triple point due both to the
small PN energy barrier and to the hybridization between
the nearly degenerate states. This assertion will be con-
firmed by the results of the next paper where the quantum
lattice fluctuations will be treated as perturbation through
a tight binding model [17].

Unlike the conclusion of reference [11], we find a plausi-
ble mechanism for a drastic reduction, under specific con-
ditions by several orders of magnitude, of the effective
mass of a bipolaron while preserving a relatively large
binding energy. Let us recall that Figure 4 shows that
the binding energy close to the triple point is still about
0.005E0. Since E0 = 8g2/~ω0 could reach in some real-
istic physical models a magnitude of about 10 eV, this
binding energy can be close to 0.05 eV which corresponds
in temperature units to 500 K! In the same region, the
Peierls-Nabarro energy barrier has a value almost equal
to this binding energy. It is drastically reduced compared
to what could be expected for small bipolarons in stan-
dard theories. Note that is about 50 times smaller than
the Peierls-Nabarro energy barrier of the bipolaron (S0)
at U = 0 and the same value of t.

When the temperature of the system goes below this
characteristic temperature where bipolarons can form, and
if the tunnelling energy could reach comparable values
(which will be shown in the next paper), this effect might
be sufficient to favor a superfluid state at 0 K against
either a bipolaron ordering or a magnetic polaron order-
ing. This state could persist to unusually large temper-
atures. There is, of course, another condition, which is
that the direct bipolaron interactions are not too strong.
This is very unlikely to be true at half-filling, where the
polarons are close-packed, but this condition might be-
come fulfilled when the density of electrons moves suf-
ficiently far from half-filling. These quantitative results
in the Holstein-Hubbard model yield a more quantita-
tive support to earlier but less specific conjectures that
high Tc superconductivity could be explained by a well
balanced competition between electron-electron repulsion
and electron-phonon interaction [15,16].

The methods used above should also work with other
perturbations from the anti-integrable limit. In the present
paper, the Laplacian form for the kinetic energy implies
that the bipolaron ground-state when it has the square
symmetry, has necessarily the trivial quantum symmetry
(s). However, it is not physically unrealistic to assume
that the electronic kinetic energy terms in Hamiltonian (1)
might be different from a discrete Laplacian form4. When
there are second-nearest-neighbor electronic transfers with
significant amplitudes (but not necessarily as large as the
nearest-neighbor integral) and with appropriate signs, the
ground-state electronic wave function {ψi,j} of bipolaron
(QS) should have a (d) symmetry (see Appendix C). A
superfluid state of such bipolarons with a degenerate in-
ternal quantum symmetry could be perhaps related with
the now well accepted fact that the superconducting order
parameter of cuprates has a (d) wave symmetry [29]. Fur-
ther works will investigate consequences of this quantum
symmetry. We expect that when the (d) wave symmetry
is favored by appropriate terms, the stability domain of
the bipolarons that can take advantage of this symmetry
will be extended: that is, those of bipolaron (QS).

In principle, the method used in this paper for cal-
culating adiabatic bipolarons could be extended to more
complex and realistic models. There are many kinds
of bipolarons in the anti-integrable limit, as shown in
Appendix A. It is not obvious that only bipolarons (S0),
(S1) or (QS) are competing as ground-states. More gen-
erally, if there are more transfer integrals between further
neighbors, other N2 star multisinglets with N2 > 4 (e.g.
N2 = 8 etc.) might become more favorable as bipolaron
ground-state in some cases.

Of course, the present study with only two electrons
is by far not sufficient to describe real cuprates where the
density of electrons is close to half filling. Our model suf-
fers in that we are not yet able to describe in a satis-
factory fashion the interactions between the bipolarons.
Nevertheless, we believe that we already obtained useful

4 A reduced Holstein-Hubbard Hamiltonian on the copper
square 2D sublattice of cuprates should involve more than
nearest-neighbor transfer integral due to the oxygen bridges.
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informations on the effect of competing strong electron-
phonon and strong electron-electron interactions. Our
approach supports the possibility of a bipolaronic mecha-
nism to explain high Tc cuprate superconductors, and this
might be a clue for a more consistent explanation for the
origin of high Tc superconductivity in real high Tc super-
conducting cuprates.

Of course, one may argue against our approach that as-
suming a large tunnelling energy for bipolarons is a warn-
ing that the system might not be well described anymore
by perturbative methods from the adiabatic limit. But,
our results also warn that perturbative methods from a
Fermi liquid model with strong electron interactions is
also quite far from its limit of validity because of the non-
negligible lattice distortions that could be generated. From
a strict mathematical point of view, there are no reasons
why the same physical state could be not described from
different limits, so that a debate about this question of
principle is useless. In the end, only the efficiency and
simplicity of a theory, are the right criteria for physicists.

We thank R.S. MacKay and C. Baesens for useful discussions.
One of us (LP) acknowledges DAMTP in Cambridge for its
hospitality during the completion of this manuscript.

Appendix A: Bipolaron states
at the anti-integrable limit

We describe an elementary classification of the bipolaron
solutions in the anti-integrable limit. It could also proba-
bly be obtained as a special case of two electrons of the
more sophisticated homology theory that was recently de-
veloped by Baesens and MacKay [30] for the pure Holstein
model with many electrons.

These bipolaron solutions {ψi,j} fulfill equations
(10, 13) at t = 0, which yields(

−1
4

(ρi + ρj) + Uδi,j

)
ψi,j = Felψi,j (A.1)

where the electronic density ρi is defined by equation (12).
We first note that for any solution of this equation,

the phases of the complex numbers ψi,j can be chosen
arbitrarily and independently. Thus, in this paper, we re-
move this trivial degeneracy by choosing their phases to be
zero, that is ψi,j is assumed to be real positive. However,
it could be removed by fixing another symmetry for the
bipolaron (e.g. symmetry (s′) or (d)). In principle, remov-
ing the phase degeneracy is necessary to allow a unique
continuation of a solution at t 6= 0 (if there is no other
continuous degeneracy). Since we noted that the bipolaron
ground-state at t 6= 0 necessarily fulfills this condition, it
could be found among these continued solutions. Actu-
ally, this trick is analogous to that used in reference [25]
for proving the existence of discrete breathers.

There is another trivial degeneracy at t = 0 but that
is now discrete. Any solution of equation (A.1) yields in-
finitely many other solutions with the same energy, which

are simply obtained by arbitrary permutations of the sites
of the lattice j = P(i).

For each solution, the set of occupied sites i ∈ S is
defined by the condition ρi 6= 0. We call link a pair of
sites (i, j) such that ψi,j 6= 0 (which implies i ∈ S and
j ∈ S). A bipolaron state at t = 0 is said to be connected
if the graph generated by all the links is connected.

We first investigate the connected states of
equation (A.1), which implies that when ψi,j 6= 0,

Uδi,j −
1
4

(ρi + ρj) = Fel. (A.2)

Fel is independent of the pair of connected sites (i, j).
Considering two different sites i and j connected to a third
site n, it comes out that ρi + ρn = ρj + ρn, which implies
ρi = ρj . More generally, two occupied sites connected by
some path with an even number of links have necessarily
the same electronic density. As a result, the set of occupied
sites S is the union of two disjoint sets of sites S1 and S2

where the electronic densities are the same. For i ∈ S1,
the electronic density is ρi = ρ1 and for j ∈ S2 , ρj = ρ2.
Moreover, sites i ∈ S1 are only linked to sites j ∈ S2 and
vice versa.

We consider separately the connected bipolaron states
without and with doubly occupied sites i. These sites are
defined by the condition ψi,i 6= 0.

A.1 Connected bipolaron states with no doubly
occupied site

If ψi,i = 0 for any i, the electronic wave function is a
normalized combination of two sites singlet states defined
in equation (18), and consequently these states and their
energies do not depend on U .

Ns = N1 +N2 is defined as the total number of occu-
pied sites, N1 is the number of sites in S1 with density ρ1

and N2 the number of sites in S2 with density ρ2. Since
the total number of electrons is two,

N1ρ1 +N2ρ2 = 2. (A.3)

It follows from equation (14) that

Fv = −1
8

∑
i

ρ2
i = −1

8
(N1ρ

2
1 +N2ρ

2
2) (A.4)

and equivalently from equations (16, A.2)

Fv = −1
4

(ρ1 + ρ2) +
1
8

(N1ρ
2
1 +N2ρ

2
2). (A.5)

Identifying the two results (A.4, A.5), and using
equation (A.3), two solutions come out which are first

ρ1 =
1
N1

and ρ2 =
1
N2

with (A.6)

Fv = − Ns

8N1N2
(A.7)
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and second

ρ1 = ρ2 =
2
Ns

with (A.8)

Fv = − 1
2Ns
· (A.9)

In the first case (A.6), we have ρ1 6= ρ2 when N1 6= N2.
Then ψi,j 6= 0 when i ∈ S1 and j ∈ S2 or vice versa.
This condition determines a rectangular N1 ×N2 matrix.
The square of its real positive coefficients fulfills the linear
equations (12)

∑
j∈S2

ψ2
i,j =

1
2N1

(A.10)

∑
i∈S1

ψ2
i,j =

1
2N2
· (A.11)

A particular solution of this set of equations is ψ2
i,j =

1/(2N1N2). However, there are N1 +N2 linear equations
to determine the N1N2 coefficients. Except for the case
N1 = 1 or equivalently N2 = 1, (we have N1 6= N2),
this solution ψi,j is degenerate and belongs to a nonvoid
bounded and compact domain defined by the positivity of
ψ2
i,j .

The solutions with N1 = 1 appear especially interest-
ing, not only because they are not continuously degenerate
but because their energy Fv = −(N2 + 1)/(8N2) < −1/8
is significantly lower than zero. It is not far above those of
the bipolaron (S0) which is Fv = −1/2+U and those of the
singlet bipolaron (S1) which is Fv = −1/4 (see Fig. 13).
We call them star multisinglets. (S1) and (QS) are star
multisinglets with N2 = 1 and N2 = 4 (see Fig. 1).

In the second case (A.8) or in the first case when
N1 = N2, the electronic densities at the Ns = 2N1 occu-
pied sites are equal. Then there are in generalNs(Ns−1)/2
nonzero coefficients ψi,j = ψj,i since there are no dou-
bly occupied sites (ψi,i = 0). They fulfill Ns equations∑
j ψ

2
i,j = 1/(2Ns) (12). Again, this system has a trivial

solution, which is ψ2
i,j = 1/(2Ns(Ns − 1)) for i 6= j ∈ S.

However, when Ns ≥ 4, this system of equations becomes
underdetermined and yields continuously degenerate so-
lutions that belong to a compact domain since again ψ2

i,j
must be found positive.

It is worthwhile to remark that although these so-
lutions were assumed to be connected, when they form
a continuously degenerate set this set may contain non-
connected states just at the border of the compact do-
main of solutions. For example, in this second case, let
us split the set S of occupied sites in two disjoint sub-
sets T1 and T2 with Ms ≥ 2 and Ns − Ms ≥ 2 sites
respectively. Let us set ψk,l = ψl,k = 0 for k ∈ T1 and
l ∈ T2, which corresponds to Ms(Ns − Ms) conditions.
When Ns(Ns − 1)/2 −Ms(Ns −Ms) ≥ Ns, the equation∑
j ψ

2
i,j = 1/Ns has the solution ψi,j = 1/

√
(Ms − 1)Ns

for i 6= j ∈ T1 and ψi,j = 1/
√

(Ns −Ms − 1)Ns for
i 6= j ∈ T2. This situation is found to occur for Ns ≥ 6.
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Fig. 13. At t = 0, energy as a function of Ns: (a) star sisters
solutions for U = 0.25, (b) star sisters solutions U = 0.4, and
(c) star multisinglets (S1) for Ns = 2, bisinglet (BS) for Ns = 3,
trisinglet (TS) for Ns = 4, quadrisinglet (QS) for Ns = 5.

A.2 Connected bipolaron states with doubly occupied
sites at U 6= 0

Let us require Ns > 1 to avoid the onsite bipolaron (S0).
Such connected solutions {ψi,j} of equation (A.1) have at
least one doubly-occupied site k (i.e. such that ψk,k 6= 0).
The set of occupied sites can be split in two sets S1 and
S2 with electronic density ρ1 and ρ2, respectively. Let us
consider a doubly occupied site k which we assume to
belong to the set of sites S1 with electronic density ρ1.
Let us also consider a site l ∈ S2 such that ψk,l 6= 0.
There exists such a site since the solution is connected.
Then, because of equation (A.2), we have

Fel = −1
2
ρk + U = −1

4
(ρk + ρl)

= −1
4

(ρ1 + ρ2) = −1
2
ρ1 + U (A.12)

which implies

U =
ρ1 − ρ2

4
· (A.13)

All the doubly occupied sites must belong to S1. The
nonzero Hubbard amplitude U obviously implies distinct
electronic density for doubly-occupied and non-doubly-
occupied sites. It follows from equation (A.3) that

ρ1 = 2
1 + 2UN2

Ns
and ρ2 = 2

1− 2UN1

Ns
(A.14)

which implies

− 1
2N2

< U <
1

2N1
(A.15)

in order that both ρ1 and ρ2 be positive.
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We now obtain from equations (14, 16) at t = 0

Fv =
1
8

(N1ρ
2
1 +N2ρ

2
2)− 1

4
(ρ1 + ρ2) (A.16)

and substituting (A.14) in (A.16)

Fv =
1

2Ns
[4U2N1N2 + 2U(N1 −N2)− 1] (A.17)

According to equation (12), the set of electronic states
ψi,j = ψj,i satisfy

ρ1

2
= ψ2

i,i +
∑
j∈S2

ψ2
i,j for i ∈ S1 (A.18)

ρ2

2
=
∑
i∈S1

ψ2
i,j for j ∈ S2 (A.19)

where ρ1 and ρ2 are given by equations (A.14). There
are N1 + N2 linear equations for calculating N1(N2 + 1)
positive numbers ψ2

i,i with i ∈ S1 and ψ2
i,j = ψ2

j,i with
i ∈ S1 and j ∈ S2. A particular solution is obtained when
all ψ2

i,j = ρ2/(2N1) = (1 − 2UN1)/(NsN1) and all ψ2
i,i =

(N1ρ1 − N2ρ2)/(2N1) = (N1 − N2 + 4UN1N2)/(N1N2).
The positivity of ψ2

i,i requires

N2 −N1

4N1N2
< U. (A.20)

Actually, there are no positive solutions at all to equa-
tions (A.18, A.19) when this condition is not fulfilled.

When conditions (A.15) and (A.20) are fulfilled and
when N1 > 1, the number of variables exceeds the number
of equations, and there is a compact set of degenerate
positive solutions to the linear equations (A.18, A.19).

When N1 = 1 and when

N2 − 1
4N2

≤ U ≤ 1
2

(A.21)

there is a unique solution to this set of linear equations.
For a given Ns, it has the lowest energy Fv (plotted in
Fig. 13 for different values of U). This solution is called
N2 star sister. It can be interpreted as a mixing between
the bipolaron (S0) and the N2 star multisinglet. We de-
note (S0/S1) the one star sister that mixes both (S0)
and (S1) etc. According to the implicit function theo-
rem, this nondegenerate solution can be continued to t
nonzero except at the bifurcation points at U = 1/2 and
U = (N2 − 1)/4N2 where this solution bifurcates with
(S0) and the N2 star multisinglet, respectively. In the anti-
integrable limit t = 0, its energy is larger than both those
of (S0) and N2 multisinglet (see part 5 for t > 0).

A.3 Non connected bipolaron states

Let us now assume that we have a solution {ψi,j} of
equation (A.1), which is not connected. Then, it can be
decomposed into a sum of normalized connected compo-
nents {ψαi,j}. We define Sα as a set of lattice sites that are

connected with each other by a sequence of links. ψαi,j 6= 0
is proportional to ψi,j for i ∈ Sα and j ∈ Sα and zero
elsewhere. The proportionality coefficient λα is chosen in
order that {ψαi,j} normalized. Then we have

ψi,j =
∑
α

λαψ
α
i,j (A.22)

with ∑
α

|λα|2 = 1. (A.23)

Two components α and β have no common occupied site.
Then, {ψαi,j} is a connected solution of equation (A.1),

for the eigenenergy Fαel = Fel/|λα|2 and the Hubbard term
Uα = U/|λα|2.

If component α has no doubly occupied sites, it does
not depend on U . Then if Nα

1 +Nα
2 = Nα

s represents the
number of sites in each of the two groups of sites with
different electronic densities defined at the beginning of
this Appendix, equation (A.2) implies

|λα|2 = −4Fel
Nα

1 N
α
2

Nα
s

(A.24)

If component α has doubly occupied sites (see
Appendix A.2), then equation (A.1) implies

|λα|2 = −Nα
s Fel − U(Nα

2 −Nα
1 ) (A.25)

There are constraints for solving the second equation
because of inequalities (A.15) and (A.20), which imply

− 1
2Nα

2

<
U

|λα|2
<

1
2Nα

1

(A.26)

Nα
2 −Nα

1

4Nα
1 N

α
2

<
U

|λα|2
· (A.27)

Conversely, we can construct non-connected bipolaron
states which are combination of non-overlapping con-
nected states. Then the amplitude |λα|2 is defined by
equations (A.24) or (A.25), but then we have to choose
Fel in order that the normalization condition (A.23) is
fulfilled. This is easy to do when only components α with
no doubly occupied sites are involved. Otherwise, we have
to take into account the constraints (A.15) and (A.20).
There are many such solutions but we did not investigate
them in detail. Some of them are easy to find: for example,
the nonconnected solution with two components involving
the bipolaron (S0) located on two adjacent sites. This so-
lution is called (2S0) and has the energy U − 1/4.

It can be checked that the energy of the disconnected
state is always larger than those of its components with
the smallest energy.

Appendix B: Two-site model

It is instructive to analyze all the extrema of the varia-
tional form (14) on a lattice reduced to only two sites i
and j, because it can be explicitly calculated in all detail.
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However, a limitation of this restricted model is that in
addition to the absence of extended states, the bipolaron
(QS) cannot occur with only two sites.

Setting ψi,i = x, ψj,j = y and ψi,j = z, using the
normalization x2 + y2 + 2z2 = 1, (14) becomes

Fv = −1
4
− 1

4
(x2 − y2)2) + U(x2 + y2)

−
√

2t(x+ y)
√

1− x2 − y2. (B.1)

Considering as equivalent the extrema obtained by
symmetries (x → −x, y → −y) and (x → y, y → x),
there are up to 4 kinds of extrema to this variational form
at t = 0:

– Bipolaron (S0) with energy U−1/2 is a local minimum
for U < 1/2 and becomes a saddle point with only
one unstable direction for U > 1/2. There are two
symmetric such solutions located either at site i or at
site j.

– Bipolaron (S1) with energy −1/4 is a local minimum
for U > 0 and becomes a maximum (with two unstable
directions) for U < 0.

– Bipolaron (2S0) is a non connected state consisting
of ψi,i = ψj,j = 1/

√
2 and ψi,j = ψj,i = 0. It is a

maximum (two unstable directions) for U > 0 and a
saddle point (one unstable direction) for U < 0.

– When 0 < U < 1/2, there is another extremum which
is the 1 star sister (S1/S0) described in Appendix A. It
is a saddle point with one unstable direction. It bifur-
cates with bipolaron (S1) at U = 0 and with bipolaron
(S0) at U = 1/2. There are two symmetric such solu-
tions located at site i or j.

The minimax corresponding to the PN energy barrier
for moving either bipolaron (S0) or (S1) is nothing but
the unique saddle point which could be (2S0) (U < 0),
(S1/S0) (0 < U < 1/2) or (S1) (1/2 < U).

At t = 0 and U = 0, bipolarons (S1) and (2S0), which
are both spatially symmetric, have also the same energy
and the same electronic density (see Fig. 14). When t 6= 0,
this degeneracy is raised as shown in Figure 14.

Appendix C: Quantum symmetries
of bipolarons
Eventhough no nontrivial quantum symmetry appears for
the bipolaronic ground-states of our model, it is worth-
while to going forward now some further work of ours and
discuss the possibility of nontrivial quantum symmetries.
Actually, such symmetries are already latent in the anti-
integrable limit and could be manifested easily in appro-
priately modified models.

As we pointed out, in the anti-integrable limit, only the
modulus of ψm,n is determined but not the phases. This
degeneracy is expected to be lifted by the perturbation
from this limit due the electronic kinetic energy. However,
it might not be completely lifted in some cases.

This situation may occur for bipolarons associated
with a lattice distortion (or equivalently an electronic den-
sity) which has the square symmetry of the lattice (group
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Fig. 14. Bipolaron energies versus U at the anti-integrable
limit t = 0 (top) and at t = 0.05 (bottom). Ground-state (thick
full line), stable bipolaron (full line), minimax (thick dashed
line), maximum (thin dashed lines).

C4v). This symmetry group has only two generators, which
are for example the π/2 rotation and the reflection with
respect to the x axis. Any of the symmetry transforma-
tions change only the phase of the electronic wave function
{ψm,n} but not its modulus |ψm,n|.

There are three possible group representations for C4v

usually denoted A, B and E in textbooks of crystallogra-
phy [31]. We denote them (s), (s′) and (d) respectively5.
(see Fig. 15)

5 In principle, the (d) symmetry characterizes the dimension
5 representation l = 2 of the continuous rotation group O(3) in
three dimensions. We still use this terminology for the symme-
try group of the square lattice although it is not appropriate,
but because it is the most standard one in symmetry theory of
superconductivity.



58 The European Physical Journal B

Ψ0-m=1/√8

-m

Ψ0m=1/√8

Ψ0-n=1/√8

Ψ0n=1/√8

0 m

n

-n

(s)

Ψ0m=1/√8

Ψ0-n= -1/√8

Ψ0-m=1/√8

Ψ0n= -1/√8

0-m m

n

-n

(s’)

Ψ0m=1/√8

Ψ0-n=- i /√8

Ψ0-m= -1/√8

Ψ0n= i /√8

0-m m

n

-n

(d)

Fig. 15. Three (QS) bipolarons at the anti-integrable limit
with the different quantum symmetries (s) (top left), (s′) (top
right) and (d) (bottom).

– When {ψm,n} has the (s) symmetry, it is unchanged
by any symmetry operation. This representation has
obviously dimension 1.

– When {ψm,n} has the (s′) symmetry, {ψm,n} is
changed into {−ψm,n}, by a π/2 rotation of the lat-
tice. It is unchanged by reflection with respect to the x
axis. The other transformations are obtained by com-
binations of these ones. This representation has also
dimension 1.

– For the (d) symmetry, {ψm,n} is changed into {iψm,n},
by a π/2 rotation of the lattice and {ψm,n} is changed
into {ψ∗m,n}, by reflection with respect to the x axis.
This representation has dimension 2.

We now note that, in the anti-integrable limit, bipo-
laron (S0) always has the symmetry (s). For bipolaron
(S1), which does not have the square symmetry but only
an axis of symmetry, the symmetry is too poor to generate
a d symmetry. Bipolaron (QS) is more interesting because
it has the square symmetry for its electronic density but
its quantum wave function may have three different quan-
tum symmetries (s), (s′) and (d) respectively (see Fig. 15).
These three states are degenerate in the anti-integrable
limit but the electronic kinetic energy lifts this degener-
acy. For a Laplacian-like kinetic energy as in the model
treated where t > 0 in (6), the preferred quantum sym-
metry is (s). However, symmetry (d) can be easily favored
when there are next nearest-neighbor transfer integrals
with negative signs in the electronic kinetic energy.

In summary, we described in Appendices A and C a
systematic method that allows one to construct all the
possible bipolaron solutions existing at the anti-integrable
limit t = 0. There are bipolaron states with no con-
tinuous degeneracy and others with a continuous degen-
eracy. Bipolarons (S0) and star multisinglets with N2

small appear to be the best candidates for bipolaronic

ground-states when the electronic kinetic energy is
switched to be non-zero. Star sisters may appear as min-
imaxes but are not found as ground-states. There are
bipolarons with the square lattice symmetry (for exam-
ple (QS)) which may have nontrivial quantum symmetries
(s′) or (d) instead of (s).

References

1. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106,
162–164 (1957); 108, 1175–1204 (1957).

2. A.B. Migdal, Zh. Eksperim. Fiz. 34, 1438 (1958); Sov.
Phys.-JETP 7, 996 (1958).

3. W.L. McMillan, Phys. Rev. 167, 331 (1968).
4. J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 1796 (1986).
5. K.A. Müller, G. Benedek, Phase Separations in Cuprate

Superconductors (World Scientific Pub., the Science and
Culture series, 1993).

6. J.R. Waldram, Superconductivity of Metals and Cuprates
(IOP Publishing Ltd, 1996).

7. A.S. Alexandrov, E.K.H. Salje, W.H. Liang, Polarons and
Bipolarons in High Tc Superconductors and related Mate-
rials (Cambridge University Press, 1995).

8. L. Landau, Phys. Z. Sowjetunion 3, 664 (1933).
9. A.S. Alexandrov, J. Ranninger, S. Robaszkiewicz, Phys.

Rev. B 33, 4526–4552 (1986).
10. D. Emin, T. Holstein, Phys. Rev. Lett. 36, 4526 (1976);

D. Emin, Phys. Today (june 1982), pp. 34.
11. B.K. Chakraverty, J. Ranninger, D. Feinberg, Phys. Rev.

Lett. 81, 433–436 (1998).
12. S. Aubry, P. Quemerais, in Low Dimensional Electronic

Properties of Molybdenum Bronzes and Oxides, edited by
C. Schlenker (Kluwer, Academic Publishers Group, 1989),
pp. 295–405.

13. S. Aubry, G. Abramovici, J.L. Raimbault, J. Stat. Phys.
67, 675–780 (1992).

14. S. Aubry, J. Phys. France IV 3, C2–349 (1993).
15. S. Aubry in reference [5], 304–334.
16. S. Aubry in reference [7], 271–308.
17. L. Proville, S. Aubry (in preparation).
18. L. Proville, Structures polaroniques et bipolaroniques dans
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